Modeling of Hidden Fire Smoke Signature in Aircraft

A CASE STUDY OF OVERHEAD AREA

Ezgi Öztekin, PhD

Technology and Management International (TAMI) LLC, Toms River, NJ

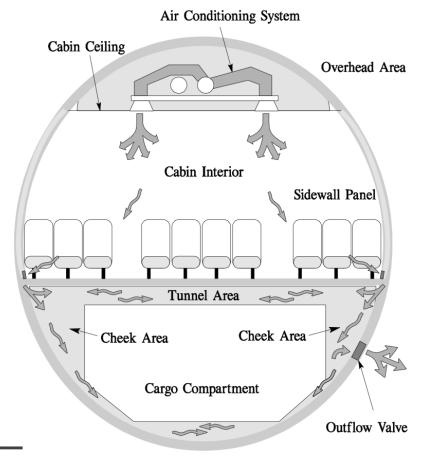
Fire Safety Branch (ANG-E21),
Aviation Research Division,
FAA William J. Hughes Technical Center, NJ

International Aircraft Systems Fire Protection Working Group Meeting, 22-23 May 2013, Köln, Germany

Introduction

- FAA Advisory Circular (AC) 120-80, In-Flight Fires, 2004.
- **Definition of hidden in-flight fires:** "Fires that are "hidden" are not readily accessible, may be difficult to locate and are more challenging to extinguish."
 - examples: fires behind sidewall paneling or in overhead areas.

Potential causes:


 Wiring failures, electrical component failures, lightning strikes, hot temperature bleed air leaks, faulty circuit protection.

Indications:

 Abnormal operation or disassociated component failures, circuit breakers, hot spots, odor, visual sighting – smoke.

Locations of interest:

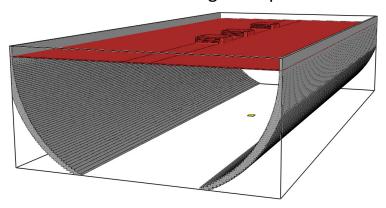
Overhead area, cheek area, sidewall panel.

Objective

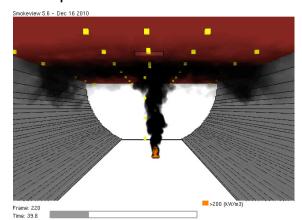
- Objective of the planned work is twofold
 - a) to improve understanding of *hidden in-flight fires* with the help of analytical tools,
 - b) to build analytical capabilities that will complement the existing experimental work for other fire scenarios.
- More specifically, the effect of
 - clutter,
 - ventilation/air circulation

on the smoke movement due to a possible fire hazard in the overhead area of B747 SP

aircraft will be studied using CFD (computational fluid dynamics).


Methodology

Proposed steps of the technical approach:


- 1. Use **CAD** (computer aided design) for the realistic representation of the dimensions and relative positions of the objects forming up the clutter in the overhead area,
 - such as air-conditioning ducts, wire bundles, other aircraft equipment and associated components.
- 2. Use **CFD** (computational fluid dynamics) for the solution of flow field as a result of aircraft system operations affecting the air movement,
 - such as ECS (environmental control systems)
 that determine the air-circulation, ventilation,
 etc.

and the buoyancy-driven flow due to the specified fire hazard.

Example: CAD model of B707 cargo compartment

Example: CFD solution of smoke in B707 cargo compartment

Methodology

- 3. Use laboratory/bench scale tests (such as TGA (Thermogravimetric Analysis), cone calorimetry, etc.)
 - for the characterization of the fire source to be employed in the full scale tests, and
 - for the determination of thermal and optical properties of selected materials within the cluttered area,
- 4. Determine type, number and location of instrumentation for full scale tests (such as thermocouples, anemometers, heat flux sensors, etc.),

TGA

Cone

Methodology

- 5. Conduct **full scale tests** in Boeing 747 test article at the FAA Technical Center when
 - ECS system is on but there is no fire,
 - ECS system is off but there is fire,
 - ECS system is on and there is fire.
- Simulate all three scenarios using CFD models.
- 7. Compare simulation predictions with the test data for model validation.

B747 SP Test Article

Ongoing work

Next steps:

- Build CAD model of the overhead area of the 747SP test article.
 - Determine methodology and review available technology that will enable accurate measurements of internal dimensions.
- Set-up boundary and initial conditions for the CFD model.
 - Characterize the fire source,
 - Determine thermal and optical properties of chosen materials,
 - Specify accurate velocity field due to ECS.
- Plan for full-scale tests.
 - Identify appropriate instrumentation for the tests,
 - Specify their locations in the overhead area.

Ongoing work

Initial challenges:

- The exact dimensions of the obstructions in the overhead area are not known.
 - Measurements of each and every object is a major challenge.
- The operation of the ECS system, the amount of recirculation/ventilation, etc., is not clear.
 - Velocity measurements when there is no fire in the overhead area will be needed to quantify the air movement prior to fire.
- To avoid computational cost associated with the large overhead volume it is necessary to define a small section and work only in this part of the overhead area.
 - It is not clear how this decision should be made.